葡京网投app_澳门葡京游戏-【在线*平台】

图片
当前位置:首页 >期刊论文 >《最新论文》>正文

逻辑幻态蒸馏的实验演示

 2025/7/15 14:09:00 《最新论文》 作者:科学网 小柯机器人 我有话说(0人评论) 字体大小:+

美国QuEra Computing股份有限公司Hengyun Zhou团队近日研究了逻辑幻态蒸馏的实验演示。该研究于2025年7月14日发表在《自然》杂志上。

实现通用容错量子计算是量子信息科学的一个关键目标。通过利用量子纠错码将量子信息编码到逻辑量子位中,可以检测和纠正物理错误,从而大大降低逻辑错误率。然而,在这种编码量子位上可以轻松实现的逻辑运算集往往受到限制,需要使用称为“幻态”的特殊资源状态来实现通用的经典硬电路。准备高保真幻态的一个关键方法是执行“蒸馏”,从多个较低保真度的输入中创建它们。

研究组介绍了在中性原子量子计算机上用逻辑量子位实现幻态蒸馏的实验。该方法利用动态可重构架构对许多逻辑量子位并行编码和执行量子运算。他们演示了在d  =  3和d  =  5颜色代码中编码幻态的蒸馏,观察到输出幻态与输入逻辑幻态相比的逻辑保真度的提高。这些实验展示了通用容错量子计算的关键构建块,并代表了迈向大规模逻辑量子处理器的重要一步。

附:英文原文

Title: Experimental demonstration of logical magic state distillation

Author: Sales Rodriguez, Pedro, Robinson, John M., Jepsen, Paul Niklas, He, Zhiyang, Duckering, Casey, Zhao, Chen, Wu, Kai-Hsin, Campo, Joseph, Bagnall, Kevin, Kwon, Minho, Karolyshyn, Thomas, Weinberg, Phillip, Cain, Madelyn, Evered, Simon J., Geim, Alexandra A., Kalinowski, Marcin, Li, Sophie H., Manovitz, Tom, Amato-Grill, Jesse, Basham, James I., Bernstein, Liane, Braverman, Boris, Bylinskii, Alexei, Choukri, Adam, DeAngelo, Robert J., Fang, Fang, Fieweger, Connor, Frederick, Paige, Haines, David, Hamdan, Majd, Hammett, Julian, Hsu, Ning, Hu, Ming-Guang, Huber, Florian, Jia, Ningyuan, Kedar, Dhruv, Kornja, Milan, Liu, Fangli, Long, John, Lopatin, Jonathan, Lopes, Pedro L. S., Luo, Xiu-Zhe, Macr, Tommaso, Markovi, Ognjen, Martnez-Martnez, Luis A., Meng, Xianmei, Ostermann, Stefan, Ostroumov, Evgeny, Paquette, David, Qiang, Zexuan, Shofman, Vadim, Singh, Anshuman, Singh, Manuj, Sinha, Nandan, Thoreen, Henry, Wan, Noel, Wang, Yiping, Waxman-Lenz, Daniel, Wong, Tak, Wurtz, Jonathan, Zhdanov, Andrii, Zheng, Laurent, Greiner, Markus, Keesling, Alexander, Gemelke, Nathan, Vuleti, Vladan, Kitagawa, Takuya, Wang, Sheng-Tao, Bluvstein, Dolev, Lukin, Mikhail D., Lukin, Alexander, Zhou, Hengyun, Cant, Sergio H.

Issue&Volume: 2025-07-14

Abstract: Realizing universal fault-tolerant quantum computation is a key goal in quantum information science [1, 2, 3, 4]. By encoding quantum information into logical qubits utilizing quantum error correcting codes, physical errors can be detected and corrected, enabling substantial reduction in logical error rates [5, 6, 7, 8, 9, 10, 11]. However, the set of logical operations that can be easily implemented on such encoded qubits is often constrained [12, 1], necessitating the use of special resource states known as ‘magic states’ [13] to implement universal, classically hard circuits [14]. A key method to prepare high-fidelity magic states is to perform ‘distillation’, creating them from multiple lower fidelity inputs [15, 13]. Here we present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer. Our approach makes use of a dynamically reconfigurable architecture [16, 8] to encode and perform quantum operations on many logical qubits in parallel. We demonstrate the distillation of magic states encoded in d = 3 and d = 5 color codes, observing improvements of the logical fidelity of the output magic states compared to the input logical magic states. These experiments demonstrate a key building block of universal fault-tolerant quantum computation, and represent an important step towards large-scale logical quantum processors.

DOI: 10.1038/s41586-025-09367-3

Source: https://www.nature.com/articles/s41586-025-09367-3

来源:科学网  小柯机器人 

版权声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。